说明

根据具体的目标调节对应的HSV
会用就好

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import cv2
import numpy as np
from torch import cartesian_prod

"""
H:表示色度
S:表示饱和度
V:表示亮度
"""

Width = 640*0.5
Height = 480*0.5
cap = cv2.VideoCapture(1)
cap.set(3, Width)
cap.set(4, Height)
cap.set(10,150)

class Camra():
def __init__(self) -> None:
# 设置摄像头窗口尺寸
cv2.namedWindow("HSV")
cv2.resizeWindow("HSV",640,240)
cv2.createTrackbar("HUE Min","HSV",0,179,self.empty)
cv2.createTrackbar("SAT Min","HSV",0,255,self.empty)
cv2.createTrackbar("VALUE Min","HSV",0,255,self.empty)
cv2.createTrackbar("HUE Max","HSV",179,179,self.empty)
cv2.createTrackbar("SAT Max","HSV",255,255,self.empty)
cv2.createTrackbar("VALUE Max","HSV",255,255,self.empty)

# 回调函数 可根据需求定义
def empty(self,a):
pass

# 滑块的设置
def slide(self):
o, img = cap.read()
imgHsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
h_min = cv2.getTrackbarPos("HUE Min","HSV")
h_max = cv2.getTrackbarPos("HUE Max", "HSV")
s_min = cv2.getTrackbarPos("SAT Min", "HSV")
s_max = cv2.getTrackbarPos("SAT Max", "HSV")
v_min = cv2.getTrackbarPos("VALUE Min", "HSV")
v_max = cv2.getTrackbarPos("VALUE Max", "HSV")

lower = np.array([h_min,s_min,v_min])
upper = np.array([h_max,s_max,v_max])
# inrange去背景
mask = cv2.inRange(imgHsv,lower,upper)
# 通过与操作 去除不在阈值范围内的背景
result = cv2.bitwise_and(img,img, mask = mask)
# 拼接三张图一同显示
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
hStack = np.hstack([img,mask,result])
cv2.imshow('Horizontal Stacking', hStack)


if __name__ == "__main__":
cam = Camra()
while True:
cam.slide()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()